
Living in a Layered World

Storage and I/O resarch of Andrea
Arpaci-Dusseau, Remzi Arpaci-Dusseau,

and Miron Livny
of the

University of Wisconsin, Madison

(as told to John Bent (formerly from Wisconsin (now at

Systems are Built from Layers

Layers are good:
• Decrease in complexity
• Increase in modularity TCP

IP

Sockets

Ethernet

Apps

Storage: Increasingly Layered

File System
File System

SCSI

File System

RAID

SCSI

SCSI

File System

Router

RAID

SCSI

Net

Net

Too Much of a Good Thing?
Layers are bad:

• Loss of performance
• Loss of information
• Loss of perspective

Hypothesis One: Loss of info prevents us from building
many new and interesting systems
• Our analysis research: Techniques to cope with information

loss
(how to learn about and exploit other layers)

Hypothesis Two: Loss of perspective leads to over-
emphasis within a single layer
• Our end-to-end reseach: Complete systems designed to

explicity work across entire stack of layers

Outline
Analysis: Bottom up

• Semantically-smart disks
• D-GRAID
• Secure delete

• Better second-level caching with X-RAY
Analysis: Top down

• Deducing RAID properties: Shear
System analysis: Coping with complexity

• EMC Centera
End-to-end systems

• IRON-FS
• BAD-FS and Stork

File system
RAID

Block-based Storage:
Too Dumb

The Problem is the Interface:
Too Narrow

But, You Can’t Change the
Interface:
Joy’s Law

What to Do?

Semantically-Smart Disk
System (SDS)

Disk system that understands file system
• Data structures
• Operations

Operates underneath unmodified FS
• Must discover layout + on-disk structures
• Must “reverse engineer” block stream

Exploits knowledge and “smarts” to
implement new class of services

File
System

SDS

$CPU

Improving Storage availability
with D-GRAID

Paramount to system availability
• Downtime millions of $ /hr

Current solution: RAID
• Handles 1 failure well

Problem
• Handles multiple failures poorly

Answer: D-GRAID uses semantic info to gracefully degra

Failures

D
at

a
A

va
ila

bi
lit

y

The “Availability Cliff”

100%

Secure Delete

Data block contents live on - long after deletion
• Could be undesirable

Idea: Upon delete, “scrub” data blocks
• Overwrite in such a way as to make unrecoverab
• Write-buffering systems can “out-smart” themselv

Semantically-smart disk version
• Must discover when blocks have been deleted

X-Ray: The Levels of
Caching

Caching in modern systems
• Multiple levels
• Storage: 2-level hierarchy

Level 1: File system (FS)
cache
• Software-managed
• Main memory of host/client
• LRU-like cache replacement

Level 2: RAID cache
• Firmware-managed
• Memory inside RAID system
• Usually LRU replacement

The Problem?

LRU Cache

LRU Cache

Main Host

RAID System

The Semantic Solution: X-
RAY

The problem: 2nd cache needs to know:
• Contents of 1st cache, to avoid redundant cachin
• Ordering of LRU queue of 1st cache, to cache

next most MRU blocks in its cache

But, these things are hard to know!
• Why? Unobservable I/O traffic

Semantic information used:
• Access time updates in inode

Analysis Looking Down
Shear: RAID Deconstruction

Shear: An information-gathering tool
• Runs series of controlled tests against RAID arra

Determines automatically:
• Pattern size, Chunk size, Number of disks, RAID

Key techniques:
• Well-crafted I/O microbenchmarks
• Statistical clustering RAID

time

Using Shear Info: Stripe-aligned
Writes

Overcome RAID-5 small write problem
Modified Linux disk scheduler

• Groups writes into full stripes
• Aligns writes along stripe boundaries
• Approximately 20 lines of code

Intra-system analysis: EMC
Centera

Purpose: Archival storage
Built from commodity components

Client

Access Nodes Storage Nodes

Net Net

Centera

Intra-box Techniques

Two “Intra-box” techniques
• Observation
• System perturbation

Two components of analysis
• Deduce structure of main communication protoco

• Object Read and Write protocol
• Internal policy decisions

• Caching, prefetching, write buffering, load balancing, et

Summary of findings

Storage nodes write synchronouslyWrite buffering

CPU usage (locally observable status)
Network status is not incorporated

Load balancing

Two copies in two nodes attached to
different power (reliability)

Replication
Write Policies

Not implemented in earlier version
Still reads from busy nodes

Load Balancing

Storage node only (commodity filesystem)
Access node and client does not prefetch

Prefetching

Storage node only (commodity filesystem)
Access node and client does not cache.

Caching
Read Policies

Outline
Analysis: Bottom up

• Semantically-smart disks
• D-GRAID
• Secure delete

• Better second-level caching with X-RAY
Analysis: Top down

• Deducing RAID properties: Shear
System analysis: Coping with complexity

• EMC Centera
End-to-end systems

• IRON-FS
• BAD-FS and Stork

Storage Trend: More
Problems

Denser drives: Capacity sells drives
• More logic -> more complexity
• More complexity -> more bugs

Cost per byte dominates: “Pennies matter”
• Manufacturers will cut corners
• Reliability features are the first to go

Increasing amount of software:
• ~400K lines of code in modern Seagate drive
• Hard to write, hard to debug

Finally, fail-stop model is incomplete

What Should We Do About It?

Paranoid File
Systems (IRON-FS)

File System: Don’t trust the disk!

Highest level in I/O stack
must verify correctness
of storage operations

Refined view: Don’t trust
anything in the I/O stack
(Reagan: “Trust but verify”)

File System

Device Driver

Controller

Firmware

Disk Media

Bus

D
is

k

And now for something
completely different: BAD-FS

and Stork
Wide-area batch computing has long been

CPU-centric
Data-intensive applications suffer

Previous (intra-layer) approaches
• Optimize data movement after CPU-centric

schedule is effected

A (inter-layer) end-to-end approach
• BAD-FS and Stork use data considerations to

schedule
• Requires coordination between data transfer

A Layered World

Layers exist
• Fact of life that is only getting worse

What we need
• Tools and techniques to cope with layers

• Enables us to build more functional
and interesting systems

• Systems designed for end-to-end

www.cs.wisc.edu/adsl
www.cs.wisc.edu/condor

Students (People who do the work)
• Nitin Agrawal
• Lakshmi Bairavasundaram
• John Bent (now at LANL)
• Nate Burnett
• Tim Denehy
• Haryadi Gunawi
• Todd Jones
• Ina Popovici
• Vijayan Prabhakaran
• Muthian Sivathanu (now at Google)
• Doug Thain (now at Notre Dame)

Professors
• Andrea Arpaci-Dusseau
• Remzi Arpaci-Dusseau
• Miron Livny

